IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Generalization of the Kramers-Langer theory: decay of the metastable state in the case of

strongly anisotropic friction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 2077
(http://iopscience.iop.org/0305-4470/25/8/022)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:21

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 2077-2092. Printed in the UK

Generalization of the Kramers—Langer theory: decay of the
metastable state in the case of strongly anisotropic friction

A M Berezhkovskiit and V Yu Zitsermani

1 Karpov Institute of Physical Chemistry, Ul Obukha 10, 103064, Moscow K-64, Russia
i Russian Academy of Sciences, Institute for High Temperatures, Izhorskaya 13/19,
Moscow 127412, Russia

Received 3 October 1990, infinal form 3 December 1991

Abstract. The problem of escape of a classical particle from a multidimensional potential
well due to the influence of random forces is studied. A new solution to the problem is
obtained which shows that with fairly large friction anisotropy the qualitative picture of
the process principaily differs from that underlying the conventionai muitidimensional
Kramers-Langer theory. According to the new process picture particles escape the well
before reaching the saddle point; the limiting stage of the process is the particle attainment
of the transition region (i.e. well dynamics), not passage through the barrier region as the
conventional theory suggests. The new expression for the rate constant predicts a slower
process rate in comparison with the Kramers-Langer theory. With decreasing friction
anisotropy the new expression coincides with the conventional one.

1. Introduction

Dynamics of noise-induced transitions between local stable states is a problem actively
being studied at the present time [1-5]. In particular, the Kramers-Langer theory (kLT)
describing Brownian particle escape from a potential well under the action of random
forces is widely used in the treatment of a great number of different physical and
chemical phenomena [5-8). In a more general case the noise-induced escape from
attractors is studied.

Usually the escape rate from attractors is determined by the well known Arrhenius
formula [2, 4]

]"~exp(—%) (1.1)

where AV is the so-called barrier height defined as the difference between the potential
energies at the saddle point and at the attractor; o” is the noise intensity which is
assumed to be small enough that AV/¢?» 1. In KLT the temperature T (in energy
units) plays the role of o ane the requirement A V/o? > 1 means that the barrier height
must be large in comparison with the temperature T.

In recent papers [2,4] the idea that the relationship (1.1) is a universal law of
nature is advanced. In the present paper we argue that this idea is wrong. We consider

0305-4470/92/082077 + 16804.50 @© 1992 10P Publishing Ltd 2077



2078 A M Berezhkovskii and V Yu Zitserman

the activated escape process due to multidimensional Brownian motion and show that
friction anisotropy can lead to strong deviations from the Arrhenius law (1.1).

In the conventional picture of particle escape from a multidimensional potential
well according to KLT, it is usually believed that (1) a particle escapes the well passing
via the saddle on the potential surface, (2) the process is limited by passage through
the region close to the saddle point and (3) Boltzmann equilibrium is maintained in
the greater part of the well. We shall show that for a wide class of potential surfaces,
all these conditions are broken when friction anisotropy is large enough. In this case,
a particle escapes the well before reaching the saddle and the process is limited by
the particle attainment of the transition region, i.e. by well dynamics. It should be
noted that any deviations from the conventional Kramers-Langer solution are due to
the presence of additional small parameters in the problem under study [5].

In the present paper, which continues a series of papers [9-11], a new expression
for the escape rate is obtained. This expression is correct for highly anisotropic friction
when it predicts a slower escape rate than the conventional expression. Both the
activation energy and the pre-exponent factor in this expression differ from conven-
tional ones. When friction anisotropy is not too high our expression reduces to the
conventional expression.

The outline of this paper is as follows. In the next section we exclude, making use
of friction anisotropy, the rapidly relaxing variables from the initial multidimensional

Fnalbar _Dlansl annatinn Ac a racult wa ahtain am affantiva ana_dimancinanal amaaatiae
A VURRVLTL ldlivi W LOLILALL S0 @ LYol VT WURALLL Gl ViV WLL VY ULIvTuULLIvIDIVLIGlE C\iuatlull

which describes the evolution of the distribution function over the slow variable. In
sections 3 and 4, starting from this equation we calculate the escape rate for potentials
of different types. For the potentials considered in section 3 the rate constant—which
is calculated using the effective equation—coincides with the corresponding asymptotes
of the conventional formula. In contrast, for the potentials considered in section 4 the
rate constant—again calculated using the effective equation—significantly differs from
the corresponding asymptote of the conventional formula. Detailed discussion of this
new expression is presented in section 5. Finally, in the conclusion the basic results
of the paper are summarized and the basic assumptions used in our theory are
enumerated.

2. Adiabatic elimination of rapidly relaxing variables: derivation of the
effective equation

Let us consider the decay of the state which, at the initial time instant ¢ =0, is localized
in one of the wells of the two-dimensional double-well potential V(x, y). In the present
paper, for simplicity, but without loss of generality, we restrict ourselves to the

#rxrmn Alnsod e 1 anon wvim mannrma that thara ic o cimola cadAdla maint An tha mAatamiinl
Wi~ uuucumuual Cdsc. 1_.51. Uy adduinid ulal inliv is a diilgiv Salluv puun Uil e pyULwChitidi

surface and that its energy measured from the bottom of the well, AV, is large compared
to the temperature T. Also, we shall neglect backflows, i.e. we shall consider just the
decay of the distribution, not its relaxation. A large barrier height, which the particle
must overcome in order to escape from the well, ensures that this process is slow
compared to relaxation of the initial distribution in the well towards a quasistationary
one which decays according to the exp(—T't) law.

The probability of particle escape from the potential well I' is the least eigenvalue
of the Fokker-Planck (rp) operator, I:FP, which describes the time evolution of the
distribution function P(x, %; y, ¥, t) in phase space. Let us choose a coordinate system
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where tensors of masses (#) and friction coefficients (%) are diagonal and write down
our starting FP-equation in the form

_;zfﬂ,p (2.1)

fFP=£x+ Ay (2'2)

~ d 1 a3V

szx____ifﬂli_&i(x+l i) (2.3)
ax m, 4x 9x m, dx m, ax

~ a 13V T

[opd_LiVxy) o =, i_( L i), 24)
ay m, dy 8y m,ay m, ay

Note that operators fx and I:y parametrically depend on y and x, respectively. To
consider just the decay problem, but not the relaxation one, we impose absorbing
boundary conditions in the second well. Of course, in such a system non-conservation
of probability takes place and the initial well population tends to zero with t-oc,

Our calculation of the least eigenvalue of the Lo operator in the case of highly
anisotropic friction begins with adiabatic elimination of rapidly relaxing variables. For
definitiveness, we consider the x-coordinate a fast one and the y-coordinate a slow
one. The eigenfunction y which corresponds to the least eigenvalue

ffppl.f‘r:rlpr (2.5)

we present in the form

¥r(x, X5 3, ¥) = @y5(x, % | y)gr(y, ). (2.6)

Here ¢, (x,AJél y} is the eigenfunction which corresponds to the least eigenvalue of
the operator L, with the fixed value of the slow coordinate y, y(y),

Ex¢7(y) = ‘)‘(}’)‘Py(y) . (2.7)

If the profile over x of the potential V(x, y) with a fixed y-value is a single-well
curve then y(y) =0 and ¢q(x, x| y) is the equilibrium Maxwell-Boltzmann distribution
over x and X in the section V(x, y = constant).

If this profile is a double-well curve, then ¥(y) # 0, and is the probability per unit
time of particie escape from the weli due to the motion along x with a fixed y-vaiue.
Assuming that the barrier which separates the wells of a double-well profile V{x, y =
constant) is large compared to T we can obtain the escape rate y(y) as a result of the
solution of the one-dimensional Kramers problem [6]

y{y)=v(y)exp[-AE(y)/T]. (2.8)

The relatianship between the initial potential V(x, y) and the y-dependence of either
the activation energy AE(y) or the pre-exponent »(y) is presented in section 4. It
should be recalled that we consider only the decay of the metastable state and ignore
backflows of particles which have escaped the well.

Let us introduce the function hy(y, y) which describes the distribution over y and y

hl"(y’}})=-|. 'pl‘(xri;y)j')dx dx.

=gr(» ¥) J Py, X[ p) dx dx. (2.9)
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According to equations (2.2)-(2.7) this function satisfies the equation

[};_‘i_LQL’e_r_rﬁJﬂi_ﬂz_?_(

+1—‘9—)+ ( )]h ~Th 2.10
3y m, dy oy myayy y(¥) |hr=Thy. (2.10)

m, 3y
The effective potential V.o (y) is connected with the intitial potential V(x, y) by the
relationship

dVerly) _[8V(x, )/3y)ey(x, %| y) dx d%
dy § @pey( %| ) dx dx

Equation (2.10) is the effective equation which describes the distribution over y
and y. In order to simplify further calculations we shall assume that the mass m, is
not too large. Then with relatively large values of n,—which are our interest—the
distribution over the y-velocities instantly relaxes towards the Maxwell distribution.

Makine conventinnal reduction nf{') ‘ln\ to an egnation which descrihes the distribution

AVAGEuLiim W ] M Y LIRWAR AN WE AT WAL WAL LIRS MR

over the y-coordinate only we obtam [12]

(2.11)

fr(y) =J. hr(y, y) dy (2.12)
Ao did 1 dVly) _
Lcﬂ'f]"_{ ydy [dy+T dy ]+7(J’)}fr—rfr (2.13)

where @, = T/n, is the diffusion coefficient.

Equations (2.10) and (2.13) are the main results of this section. In [11], with the
aid of the projection operator technique, we reduced (2.1) to an eﬁective evolution
equation. This equatlon has the same form as (2.1), but the operator LFP is changed
to the operator Le,f (2.13) containing the sink term. In [11] we show that the reduction
is valid if several conditions are fulfilled. Here we note the three conditions considered
the most important: {a) potential profile V(x, y = constant) shouid be a double-well
type; {(b) n, » 7, (some estimations clarifying this point are presented in section 5;
{c) friction coefficient n, should be large enough that one could eliminate the velocity
v from the initial Fp equation.

It should be emphasized that we assume that the motion is diffusive along the
y-coordinate only. On the motion along the x-coordinate we do not impose any
restrictions. Variations in the friction coefficient 1, lead to changes in the sink term
value, but not the form of the equation (certainly, if the above-mentioned conditions
are not disturbed). These circumstances allow us to start with the multidimensional
FP equation comprising both velocities X, y and coordinates x, y. It is evident that such
a reduction can be accomplished in the case of the multidimensional diffusion problem
also. This problem is considered in recent papers [13, 14] for the two-dimensional
case. In these papers a similar reduction of the initial multidimensional problem to
the effective one-dimensional problem is carried out. Similarities and distinctions
between both approaches and results are dealt with in [15, 16].

In the following sections we use equation (2.10) and (2.13) for calculation of the
least eigenvalue I' of the starting operator L,_-P under highly anisotropic friction. In a
further section we show that in the case of potentials with a single-well profile
V{x, y = constant) this eigenvalue coincides with asymptotes 7, -+ % of the conventional
KLT formula. In contrast, in the case of potentials with a double-well profile V{x, y=
constant) we obtain a new solution of the problem which differs considerably from
such asymptote. In section 5 we point out the range of friction coefficient n, over
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which significant departures of the escape rate I' from predictions of the conventional
KLT formula take place.

3. Escape rate calculation based on the effective equation: no sink case

In the case under study here the profile V(x, y =constant) is a single-well curve and
the Maxwell-Boltzmann distribution over x and x with each magnitude of the slow
coordinate y sets in as a result of the rapid relaxation, i.e.

l'sz____."("vy)]_ (3.1)

1 )oc B
eolx, X|y) BXP[ 5T T

The potential V(x, y = constant) has a minimum, its position x,(y) being determined
from the equation

aVix, y)
9x

=0, (3.2)

When calculating the effective potential V. {(y) we assume that in the fairly wide
vicinity of the point x,(y) the potential V(x, y) is a quadratic function of x

V(x, y)= Vo(p) +3x(p)[x — xo(y)])° (3.3}
where

P Vix,
(_A;y) _ (3.4)

Vo(y) = Vixo(»), y) x(y)= ax )
Xol¥

Equation (2.11), (3.1) and (3.3} lead to an effective potential of the form

Viely) = Vo(p)+ -ln (” )

(3.5)
where % is an arbitrary constant which fixes the zero of energy. Let us discuss the
potential V_{y) in more detail. It is possible to show that it is a double-well curve,
its minima being at the points y; and y,, and the maximum at the point y,, where y;,
yr and y,, are the values of the y-coordinate at the initial and final wells and the saddle
point in the potential V(x, y), respectively.

Thus, in the case under consideration, as a result of adiabatic elimination of the
fast variable we come to the one-dimensional Kramers problem in the potential V, {y).
This problem is described by (2.10) with y(») =0. In this case the expression for the
escape rate gives the Kramers formula [6]

1 [ Viely) ' | Viady, AV,
) VG g el -23). 00
€ sp ¥ ¥ ¥

Let us show that this expression coincides with the asymptote #,-+0o0 of the
conventional KLT expression for the escape rate. The latter expression has the form
[7,17]

i (det A

=37 \ldec 9

) Hexp(-AV/T) (3.7)
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where V™ and V*" are the matrices of the second derivatives of the potential at the
well bottom and at the saddle point, H is the single positive root of the equation
det(AH?+4H + V*P) =0. (3.8)

With 7, - o the positive root of (3.8) is determined by different formulae depending
on the sign of the matrix element V.7

1 2 4m a R

i (\/ny“";—;xﬁldet 14 pI-m) if V>0 (39)
1

H=5—(/ni+am[VE-n)  if VE<O, (3.10)

X

In the case under study when sections V(x, y =constant) are single-well curves and
VP =x(y,)>0,itis easy to see that (3.6) coincides with (3.7) in which H is determined
by (3.9).

Let us point out the principle difference between equations (3.9) and (3.10) for the
H-quantity and, hence, the difference between the conventional escape rate expressions
for potential surfaces V(x, y} with V>0 and V¥ <0. If V>0 according to (3.7)
and (3.9) the escape rate decreases with an increase in the friction coefficient n, and
tends to zero with 7, » o as 1/%,. In contrast, if V%<0 according to (3.7) and (3.10)
escape rate does not depend on the friction coefficient 5, along the slow coordinate.
This fact contradicts general qualitative ideas. Indeed, with the presence of a slow
coordinate particles escape the well in the following manner: the rapid coordinates
adjust themselves to the slow one and the process is limited by the slow motion.
Therefore, the ‘true’ escape rate should decrease with increasing ,. In the following
section we derive a new formula for the escape rate in the case of potentials with
Ve <0 which is free from this obvious defect.

4, Escape rate calculation based on the effective equation: problem with a sink-term

We begin our escape rate calculation in the case of potentials V(x, y) whose profile
over x, V{(x, y = constant), with actual y-values is a double-well curve, by establishing
the relationships between the potential V(x, y) with the sink term (2.8) and the effective
potential V.(y). It should be noted that for such potentials V.5 <0. Let us designate
the coordinates at the bottom of the left and right wells, and the top of the barrier
which separates them in the section V(x, y =constant), by xo(y), x:(y) and x,(y),
respectively. They are the roots of the equation

avVix, y) _

o 0 (4.1)

and xo(y) <x,(y)<x,(y). The activation energy AE(y), which depends on the y-
coordinate, is determined by the expression
AE(y)=Vo(y)— Voly) (4.2)

where

Vo(y) = Vixp(p), ) Vo(y) = Vixo{y), ¥} (4.3)
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It is possible to show that the potentials V,(y) and V,(y) are single-well curves which
have their minima at the points y =y, and y = y,,,, respectively, where y,, and y,, are
the values of the y-coordinate at the bottom of the initial well and at the saddle point,
respectively. The pre-exponent »(y) in equation (2.8) according to the Kramers formula,
has the form [6]

oiy) = L | ey} ”2[ (Y, b)) i]
(y)—27r[lxb(y)l] (me) Y 2m, (44)

2o(¥) = Vie(xo(y), ¥) and % (¥} = Vi(xp(y), ¥).

The basic contribution to the integrals in (2.11) for V..{y) is made in the vicinity
of point x,(y) where the function ¢,,,(x, %|y) is close to the Boltzmann distribution.
Utilizing the quadratic expansion over x of the potential V(x, y = constant) in this
vicinity

where

V(x, y) = Vo(y) +22(») x — xo(») ]’ (4.5)
we obtain the following expression for the effective potential
T x(y)
V. = Vo(y)+—In——, 4.6
aly) = Vo(y) +5 (7 (4.6)

In equation (4.6) the zero of potential energy is fixed in such a way that in the vicinity
of the point y,, the potentials V{(y) and Vy(y) coincide.,

Thus, we have established relations between all the parameters which enter into
the effective equation (2.13) with friction coeflicients and initial multidirnensional
potential V(x, y). Let us go to direct calculations of the escape rate based on this
equation.

A number of papers [18-21] are devoted to an analysis of the decay kinetics of a
state whose evolution is described by the diffusion equation with a sink term of the form

af {__@ ] |:_3_+_1_m:|+7(y)}f (4.7)

7 = g
at aarf Taylay T dy

where f(y, t) is the distribution function over the y-coordinate at the time instant f.
This equation takes account of the competition between the two processes: relaxation
towards the Boltzmann distribution in the potential V_{y) and decay due to the sink
¥{y} which destroys this distribution. Kinetics is easily calculated only in the two
limiting cases when %, =0 and %, >,

In the first case (£, =0, relaxation is frozen) the probability of the particle staying
in the well during the time interval ¢ (the so-called survival function)

Q1) = J‘ Sy, 0 dy (4.8)
changes with time according to the law
Q1) = J S (3. 0) exp[~y(y)t] dy. (4.9)

In this case the decay has a multiexponential nature and depends on the initial
distribution f(y, 0). Equilibrium in the well is not reached and particles do not escape
from the well through the saddle.
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In the other limiting case, @, >0, relaxation instantly restores the equilibrium
distribution in the potential Vo(y)

Jfo(y)cexp[—Veely)/ T]. (4.10)

Here, the decay is a single-exponential Q(t) = Q(0) exp(—T't), where the escape rate
I" has the form

r=r.= f YO) dy/ f Ay) dy. (@.11)

In the general case the decay is described by the multiexponential law
Q(t);- Z Ca BXP(*/\J) (412)
=1

where A, are the eigenvalues of the effective evolution operator I:eff (2.13), numbered
in the order of their increase, ¢, are the decomposition coefficients of the initial
distribution f(, 0) over eigenfunctions of the conjugated operator

. & 1 dVl(y) d]
[ o=— — et .

Equation (4.12) shows that for the single-exponential decay it is necessary to satisfy
two conditions, the first being the gap in the spectrum of eigenvalues of the operator
L.+ Ay« A,. This condition reflects the fact that quasistationary distribution—which
decays according to the single-exponential law exp(—A,t)—sets in during the time
interval of the order A;' which is small compared to the typical time interval of its
subsequent decay A;'. The second condition is expressed by the inequality

(4.13)

o0

a» ¥ ¢

n=2
Actually, it is the demand for the initial distribution which guarantees the single-
exponential decay of the overwhelming majority of the assembly subsystems. Further,
we assume that this condition is fuifilled.

In our method for the solution of equation (2.13), which is put forward below,
specific features of the sink term are used. The main peculiarity of the sink term is its
fast growth with y. Near the well bottom of the effective potential the sink force is
negligibly small and the distribution fr(y) in this region is close to the equilibrium
distribution. With an increase in y the sink force grows exponentially which leads to
an appreciabie depletion of the distribution f-(¥) (compared with the Boltzmann
distribution) due to particle escape. As long as the depleted region is far enough from
the well bottom, the decay kinetics is of single-exponential nature since particle escape
from the well occurs much more slowly than relaxation in the well,

In order to calculate the least eigenvalue I" let us present equation (2.13) in the form

d d
“@yg; [fea (fr/fe)] +yWfhe=Tf. {4.14)

Let us integrate this equation from —o0 up to the point y. Choice of the point 7 we
specify below. Here, we indicate that the point ¥ is chosen far enough to the right of
the well bottom, y, <7 (we take that y, <y,,), so that the normalization condition
can be written in the form

J. fr()’)d}”—"J: fr{(y)dy=1. (4.15)
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As a result, we obtain the following expression for the escape rate

r= [ s a-aum o) (16)

y=y
To obtain the escape rate I" from formula (4.16} it is necessary to know the function
J{y) with y=<3, and its first derivative at the point y, f+(7). For calculation of this

eigenfunction we use a method initiated by Kramers [6] and which was discussed in
rlpfnll in a recent review article r?')T Itg main idea takas inta account the fact that T

Aanuir

is very close to zero, and conmsts in constructing the eigenfunction fi{(y) from the
solutions of the stationary equation with I'=0. We shall see that our choice of
the point § is made in such a way that in calculating fr(y) for y <y we can neglect
the sink term y(y) in the operator Lm (2.13). As a result, the equation determining
Jr{y) for y <7 takes the form

dild 1dVdy) _
{dy[dy T dy ]}ff(y)’o- (4.17)

This equation has two linearly independent solutions: equilibrium distribution in the
potential Vd{y), f(y), and

£ [ exot Ventr)/ T1

The eigenfunction fi(y) is presented in the form of a linear combination of these two
solutions
¥y

fr(y)=fe(y){1 +AJ expl Vel ¥)/ T] dy’} y=j. (4.18)

¥o
Here, A is a constant which will be determined from the requirement of matching of
(4.18) at the point y with the expression for f-(y) which is true for y = #. The point
Yo is taken in such a way that it is between the well bottom and the point 7, far away
from each of them, i.e. y,, < y,<<#. It should be noted that the point y, does not enter
into the final expression for the escape rate.

Now, let us calculate the function f;-(y) for y = y. Here, we present the function
Jr(¥) in the form

Sr(y) = xr{y} expl~ Ver(y)/2T] (4.19)
and, as a result, pass to the Schrédinger-type equation for the function y;(y)
Fxr=Txr (4.20)
o d?
H=~ yd —+[W(y)+y(») (4.21)

The term W(y) in the ‘potential energy’ in Hamiltonian % is linked to the potential
V.a(y) by the relationship

W(y)=2, [—— Vé’fr(y)+( eff(y)) ] (4.22)
Let us define our choice of the point . The general view of the potential energy
function in the Hamiltonian (4.21) prompts us to choose as 7 the value of the

y-coordinate where both terms in the potential energy are equal:
W(7)=y(7). (4.23)



2086 A M Berezhkovskii and V Yu Zitserman

With y < j the distribution fi-(»} is close to equilibrium f,(y} since here W{(y)» y(y).
This fact justifies disregarding the sink term in (4.17). In the appendix we show that
for a wide range of y-values the growth rate of the sink term y(y) greatly exceeds the
growth rate of the competing contribution to the potential energy, W(y) for y = 3. For
this reason with y> ¥, y(y)» W(y), the distribution fi(y) is appreciably depleted
compared with the equilibrium distribution, due to particle escape.

In our solution of equation (4.20) with v = 7 we use the exponential growth of the
sink term and introduce two simplifying assumptions. We suggest that with y=y

W(y)= W(j) = constant y(¥) =y expls{y - 7)] (4.24)
where y= y(7) and s =s(j) = y'(#)/ y(F), since the function y(y) rapidly tends to
zero with y > 7. As a result, (4.20) takes the form

dxr vy r _ 3

el g, ||y TRl xe=0 y>5 (4.25)
Here we take into account that, according to the definition of the point 7 (4.23),
W(7)= (¥} = y. The solution of this equation, tending to zero with y -0, has the
form 23]

xr(y) = BK,(z) z=p exp[s(y—7)/2] (4.26)
where B is an arbitrary constant and K, (z) is the modified Bessel function [23]
2 [y
=u(¥Fr=—r/—. 4.27
#=u(F)="\5g (4.27)

¥y
Here we take into account the fact that the ratio I'/y is much smaller than unity.
The constants A and B entering into equation (4.18) and (4.26) can be determined
from the requirements of continuity of the function fr-{y) and its first derivative at the
point 7. As a result, we obtain

V(3
A=46)= =222 expl Vo5 TIhGR) (a28)
where the function h(u) has the form
K, (p)
h =—H—]-—-. 4.29
(p) Koo (4.29)

With x>0 h(u) is the positive monotonically decreasing function satisfying the
inequality h(u)= 1, equality being reached at u=0.

Now, having the explicit expression for the function fi-(¥) with y =< #, we can find
the desired eigenvalue from equation {4.16). As a result, we obtain

F=r,+I+T, {4.30)
V.«{¥) by the relationship
1
W(y)=93y[ a7 Y efr(y)+( eff(y)) ] (4.22)
_ fi¢ oui Al mfnn ol dlan camiead 3 Tha ~nmawal A tha wotsotin]l Ao
LEL us a QUI CAUILE U1 UIT PUILIL . LUG pCUtial VITW UL UL pulciial CUucigy
function in the Hamiltonian (4.21) prompts us to choose as 7 the value of the

y-coordinate where both terms in the potential energy are equal:
W(7)=y(7). (4.23)
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Assuming that in the vicinity of the well bottom the potential V, {(y} is quadratic
and calculating the integral in (4.33) we obtain

Iy= h(#)FFP’r(}’_) (4.34)

where [epr(7) is the inverse first passage time from the point y < ¥ to the point 7,
averaged over the positions of the starting point y with the Boltzmann weight [24]

D, Vi) \/ Verd 7) = Verrlya) [_ Verl9) v,fr(yw)]
T aT P T '

FFFT(J-’) = (4.35)
Here we also take account of {4.28) for A. One can show that [', and I'; have the
relationship.

r,= —f r,. (4.36)

As a result, we can present equation (4.32) for the escape rate in the form

¥y
2 _
f=I Y(¥)e(y) dy+(1-z)h(#)rm(}’)- (4.37)
This expression for the process rate is one of the main results of the present paper.
Its detailed analysis is presented in the following section. The simplified version of
(4.37) was first obtained in our paper [10]. In [10], in the second term, the factor
(1—u/4)h{w) is equal to unity, i.e. it is suggested that u=0.

5. Discussion

Analysis of equation (4.37) begins by noting that according to this expression the
escape rate is determined by the position of the point 7 in a single-valued manner. In
turn the j-position is a function of the friction coefficient 7, in accordance with (4.23).
With - o0, Fepr(#) - 0 and (4.37) takes the form (see (4.11))

F=Te=_|’ y()fe(y) dy. (5.1)
Substituting in (5.1) the explicit expressions for the functions y(y) and f.(y) we make
sure that the escape rate T, coincides with asymptote 7, = 2 of the conventional kLT
formula, i.e. with equation (3.7} in which the factor H is determined by equation
(3.10). The main contribution to the integral (5.1) is made in the vicinity of the y,;
point. This means that particles escape the well passing via the saddle, i.. the qualitative

mwrmaps mintara an whish ic haca
process picture on which kLT is based takes place.

Up to now there are two characteristic values of the y-coordinate: y,, and y,,. The
condition 7 -0 means that y> y,,. However, if j <y, but >y, the second term
in (4.37) is dominant and the escape rate takes the form

T=(1—u/4)h ()T ger(F). {5.2)
If, additionally, u is close to zero, then
[=Tgpr(7). (5.3)

In accordance with these formulae we note the following: first, in those situations
when (5.3) is applicable, the particles escape the well before they reach the saddle
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since § <y,,. Second, in this case the process is determined by the well dynamics, not
passage through the barrier region as is assumed in the conventional process picture.
Equation (4.35) for I'rpr(7) suggests this unambiguously since all the quantities entering
into it are characterized by the dynamics in the well. It should be noted that equation
(5.3} for the escape rate as an alternative to the conventional kLT formula was first
obtained in our paper [9].

Thus, (4.37) for the escape rate comprises both the conventional regime—when
particles escape from the well via the saddle on the potential surface—and the new
decay regime when I'ccTepr(7) and particles escape the well before they reach the
saddle.

Analysis of the equations obtained is considerably simplified if we specify the forms
of potentials. In typical situations when in the region of both the well bottom and the
saddle point, quadratic expansions are true and the potentials V.{y), Vo(y) and V,(y)
have the form

Verly)} = Voly}= l"70)’2 Vi(y)=A V+%kb(y - ysp)z' (5.4)

Here and below we employ the system of coordinates whose origin is at the bottom
of the initial well, i.e. y,, =0. The parameters k, and k, in (5.4) are expressed through
the parameters of the initial potential V(x, y} by the relationships

det V¥ det VP
0= Vw kb = Vsp (5.5)

The values k, and k, are positive since det V¥ and V. are both positive and det yep
and V¥ are both negative. Substituting V. {y) (5.4) in (4.22) we obtain

W(y)=;1;(—1+ﬁy2) (5.6)

where 14 = T/@ ko= m,/ko is the characteristic time of diffusion relaxation in the
potential V.q{(y). We shall also assume that in the sink term (2.8) the pre-exponent
does not depend on y, and the activation energy {4.2) has the form

AE(y)=AV+iky(y ~ yep)* —tkoy’ (5.7)
and with the actual y-values is positive and decreases with increasing y. In this case

the sink force y(y) grows with y.
In the framework of these assumptions equation (4.37) for the escape rate takes

the form
k, _
I‘=% [1 +crf(\/5':l: (ﬁ—ysp))]l“e"l-(l —%)h(#)l"m(y)- (5.8)

k { AV
.= v\/:;exp(— T ) (5.9}
- =T—19 \/ V;(Ty:) exp[— VO,‘E,}-’):I (5.10)

where erf(z) = (2/v/7) [; exp(—£%) d¢ is the integral of errors [23]. The u-value accord-
ing to (4.27) is determined by the relationship

Here

) koF .
e . (5.11)
S -
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Finally, (4.23}—from which the position of the point 7 is determined—can be
presented in the form

2urg = Vo;.‘v_’) exp[ Vo(7) ; VO(f)]. (5.12)

Here we take into account the fact that the ratio V,(#)/ T is much greater than unity
with the y-values under consideration. Generally speaking (5.12) has three roots,
however, two of them—which are near the well bottom—have nothing to do with the
subject. Using (5.12) we can write the important relationship

ky, kb(y ys)
Tepr(¥) = \/—\/7 Vg(y [ ]r, (5.13)

which shows that I'ep(7) is always smaller than the asymptote N, >0 of the conven-
tional expression I, if the point 7 is not too close to the weli bottom.

The expressions obtained allow us to specify the conditions under which the new
decay regime takes place. The conventional kLT formula (3.7) is correct if

F=yp>»VT/k,. (5.14)

The region where the escape rate is considerably smaller than that predicted by the
conventional formulae is determined by the requirement

F=Yo (5.15)

but ¥>y,. At the boundary of the region—where 7=y, ,—the escape rate (5.8) is
approximately two times lower than I',.

Equation (5.12) determines how the position of the point § changes with change
in the friction coefficient 7,. Analysis of this equation shows that the j-point shifts
deeper into the well with increasing », (more precisely, with an increase in the product
V7, in the left-hand side of (5.12}). The product .7 is a more convenient control
parameter for the problem than w»r,. With the help of this parameter the inequality
(5.15) determining the region where escape rate deviations from the conventional
formulae are considerable can be presented in the form

reT@ = JEE 522 exP(—Eo) - €= VO(ysp)/T: (516)

There is another limiation on the application of equations (4.37) and (5.8) for the
escape rate, namely that the j-point must not be too close to the well bottomT. More
precisely, this condition requires satisfaction of the inequalities

—‘i’,‘-g,i)»l ie. F2VT/ke. {5.17)

These inequalities are equivalent to a restriction on the dimensionless control parameter
I.7» of the form

/ ksys
[ 7« ::exp[—zb‘-yfe]. (5.18)

+ If this condition is not fulfilled the decay kinetics has a multiexponential nature {see section 4).
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Thus, the region of the I'.7q-parameter where our new solfution leads to considerable
escape rate deviations from the conventional predictions is given by the inequalities

[ko £ k kyy?
k—bfexp(—so)« o7« k—:exp ;—J;_E . (5.19)

It should be noted that the parameter I'.75 is a complex construction. It depends
on the friction anisotropy and also on other problem parameters such as temperature,
potential, etc. To study the dependences in detail it is necessary to concretize the
model. This will be done in a further paper.

In concluding this section let us point out the most important feature of the revised
escape rate (4.37), (5.8): the rate tends to zero with an increase in n, (at fixed 5,) in
contrast with the conventional expression which tends to a finite value with 5, >
(see (3.7), (3.10)). To verify the presence of such a feature it is necessary to take into
account the relationship between the friction coefficient and the #-point position which
is set up by equation (5.12}.

6. Concluding remarks

In the paper a new solution of the noise-induced escape problem is obtained. This
solution shows that if friction anisotropy is strong enough particles escape the well
before reaching the saddle on the potential surface. In this case the process is limited
not by passage across the barrier top but by reaching the transition region, i.e. by the
well dynamics. When the friction anisotropy is not too large the conventional solution
of the problem, i.e. the Kramers-Langer theory is correct.

The new solution predicts considerably smaller escape rate values than the conven-
tional one if friction anisotropy is strong enough. Additionally, our theory shows that
with very strong friction anisotropy when condition (5.18) is disturbed, the decay
kinetics has a multiexponential character and depends on the initial state of the system
(see section 4),

Such a state of affairs seems to us particularly interesting in two respects. The first
aspect is connected with the opinion repeatedly quoted in the literature that the only
condition which guarantees the single-exponential character of decay kinetics is the
barrier height requirement, i.e. AV/T> 1 [5]. Our theory shows that this opinion is
wrong: the transition from a single exponent decay to a multiexponent decay occurs
as a result of a change in friction anisotropy, although the requirement AV/T>1 in
this case is fulfilled.

Secondly, our analysis shows limitations of the viewpoint that noise-induced escape
from attractors always occurs via the saddle on the potential surfaces. We show that
there are situations in which particles escape from the well before they reach the saddle,
in spite of the fact that the condition AV/T » 1 is met.

In conclusion, we reiterate the conditions under which our new solution is true.
These conditions represent the requirements which are placed upon both the friction
coefficients and the potential surface. The friction must be sufficiently anisotropic to
ensure the existence of the slow mode. However, this anisotropy must not be too
strong, otherwise, the decay has a multiexponential character. As regards the potential
surface, it should be noted that it must have double-well sections with fixed values of
slow coordinate over a wide range of these values. Also, the second well must be
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deeper than the first so that neglecting the return of particles which escape the first
well is valid.

Appendix

Let us compare the growth rates of the competing contributions to the ‘potential energy’
in the Hamiltonian {4.21), W{y) and ¥(y), at the point 7 determined from (4.23). For
this purpose we use the potential V(x, y) studied in section 5. Let us consider logarithmic
derivatives

di Ky (e — 7)+ ko
1':1)‘):(}’) jzs(}_’)= b(yg ;)'l'koy (Al)
and
A WO)| ke
dy |y T-1+kg 72Ty (A2)

Comparison of these equations shows that over a wide range of $-positions the growth
rate of the sink term y(y) significantly exceeds the growth rate of the competing term
W (y) at this point. This relation between the growth rates breaks down in two cases:
(1) the approach of the j-position close to the well bottom, 7 ~+T/ky; and (2) with

F>Yep-

In the first case the decay has a multiexponential character and our new expression
for the escape rate does not ‘work’. In the second case our method of problem treatment
does not ‘work’. These j-positions correspond to friction coefficients 7, for which it
is not reasonable to assume that the y-coordinate is a slow one. In such situations the
procedure of adiabatic elimination of fast variables leading to our basic equations
(2.10) and (2.13) is not applicable. In this case the escape rate I' is determined by the
conventional kLT formula.
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