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Abstmet. The problem of escape of a classical panicle from a multidimensional potential 
well due to the influence of random forces is studied. A new solution to the problem is 
obtained which shows that with fairly large friction anisotropy the qualitative picture of 
the process principaiiy ditfers iram that underiying the conventianai muitiaimensianai 
Kramers-Langer theory. According to the new process picture particles escape the well 
before reaching the saddle point; the limiting stage of the process is the panicle attainment 
of the transition region (i.e. well dynamics), not passage through the barrier region as the 
wnventional theory suggests. me new expression for the rate Constant predicts a slower 
proccas rate in comparison with the Kramcrs-Langcr thcdry. With dccnariing friction 
anisotropy the new expression coincides with the conventional one. 

1. Iutrductiou 

Dynamics of noise-induced transitions between local stable states is a problem actively 
being studied at the present time [l-51. In particular, the Kramers-Langer theory (KLT) 
describing Brownian pariicie escape from a poieniiai weii under iiie aeilon of' random 
forces is widely used in the treatment of a great number of different physical and 
chemical phenomena [5-81. In a more general case the noise-induced escape from 
attractors is studied. 

Usually the escape rate from attractors is determined by the well known Arrhenius 
formula [2,4] 

where A V  is the so-called barrier height defined as the difference between the potential 
energies at the saddle point and at the attractor; u2 is the noise intensity which is 
assumed to be small enough that A V / u 2  >> 1. In KLT the temperature T (in energy 
units) plays the role of u2 ane the requirement A V / u 2  >> 1 means that the barrier height 
must be large in comparison with the temperature T. 

In recent papers [2,4] the idea that the relationship (1.1) is a universal law of 
nature is advanced. In the present paper we argue that this idea is wrong. We consider 
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the activated escape process due to  multidimensional Brownian motion and show that 
friction anisotropy can lead to strong deviations from the Arrhenius law (1.1). 

In the conventional picture of particle escape from a multidimensional potential 
well according to KLT, it is usually believed that (1) a particle escapes the well passing 
via the saddle on the potential surface, (2) the process is limited by passage through 
the region close to the saddle point and (3) Boltzmann equilibrium is maintained in 
the greater part of the well. We shall show that for a wide class of potential surfaces, 
all these conditions are broken when friction anisotropy is iarge enough. In this case, 
a particle escapes the well before reaching the saddle and the process is limited by 
the particle attainment of the transition region, i.e. by well dynamics. It should be 
noted that any deviations from the conventional Kramers-Langer solution are due to 
the presence of additional small parameters in the problem under study [5]. 

In the present paper, which continues a series of papers [9-113, a new expression 
for the escape rate is obtained. This expression is corrcct for highly anisotropic friction 
when it predicts a slower escape rate than the conventional expression. Both the 
activation energy and the pre-exponent factor in this expression differ from conven- 
tional ones. When friction anisotropy is not too high our expression reduces to the 
conventional expression. 

The outline of this paper is as follows. In the next section we exclude, making use 
of friction anisotropy, the rapidly relaxing variables from the initial multidimensional 

which describes the evolution of the distribution function over the slow variable. In 
sections 3 and 4, starting from this equation we calculate the escape rate for potentials 
of different types. For the potentials considered in section 3 the rate constant-which 
is calculated using the effective equation-coincides with the corresponding asymptotes 
of the conventional formula. In contrast, for the potentials considered in section 4 the 
rate constant-again calculated using the effective equation-significantly differs from 
the corresponding asymptote of the conventional formula. Detailed discussion of this 
new expression is presented in  section 5.  Finally, in the conclusion the basic results 
of the paper are summarized and the basic assumptions used in our theory are 
enumerated. 

FnLLnr DlonrL an..~t;nn A s  Q .-...It ..,a -h+n:n n- nUa,+:.,n n n ~  ,l:...,,..~:..n-l en..n+:.... 
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2. Adiabatic elimination of rapidly relaxing variables: derivation of the 
effective equation 

Let us consider the decay of the state which, at the initial time instant t = 0, is localized 
in one of the wells of the two-dimensional double-well potential V ( x ,  y). In the present 
paper, for simplicity, but without loss of generality, we restrict ourselves to the 

surface and that its energy measured from the bottom of the well, AV, is large compared 
to the temperature T Also, we shall neglect backflows, i.e. we shall consider just the 
decay of the distribution, not its relaxation. A large barrier height, which the particle 
must overcome in order to escape from the well, ensures that this process is slow 
compared to relaxation of the initial distribution in the well towards a quasistationary 
one which decays according to the exp(-rt) law. 

The probability of particle escape from the potential well r is the least eigenvalue 
of the Fokker-Planck (FP) operator, L,,, which describes the time evolution of the 
distribution function P(x ,  x; y .  j ;  f) in phase space. Let us choose a coordinate system 

I 2: -"--:--..I r -&..- "-"..- athnttLa-a:r ":.."ln.n2~lnrnintnntLn--+~lt:nl 
Lwu-"IIII~1131uLIPI bPJS. L G I  "3 P J I Y L l l C  U I P L  L . I s L =  12 ', " L L ' 6 . C  DP""lb p""'L "1. L1.C p"L""". 
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where tensors of masses (A )  and friction coefficients (6) are diagonal and write down 
our starting Fp-equation in the form 

1 1  iFp= L, + L~ 

Note that operators i, and i, parametrically depend on y and x, respectively. To 
consider just the decay problem, but not the relaxation one, we impose absorbing 
boundary conditions in the second well. Of course, in such a system non-conservation 
of probability takes place and the initial well population tends to zero with f+m. 

Our calculation of the least eigenvalue of the iFp operator in the case of highly 
anisotropic friction begins with adiabatic elimination of rapidly relaxing variables. For 
definitiveness, we consider the x-coordinate a fast one and the y-coordinate a slow 
one. The eigenfunction I/+ which corresponds to the least eigenvalue 

i F P h  = r+, (2.5) 
we present in the form 

Here ( P ~ ( ~ )  (x,>ly) is the eigenfunction which corresponds to the least eigenvalue of 
the operator L, with the fixed value of the slow coordinate y, y(y), 

If the profile over x of the potential V(x, y) with a fixed y-value is a single-well 
curve then y ( y )  = 0 and p,(x, y) is the equilibrium Maxwell-Boltzmann distribution 
over x and x in the section V(x, y = constant). 

If this profile is a double-well curve, then y(y) # 0, and is the probability per unit 
time oi particie escape irom the weii due to the motion aiong x with a iixed y-vaiue. 
Assuming that the barrier which separates the wells of a double-well profile V(x, y = 
constant) is large compared to T we can obtain the escape rate y(y) as a result of the 
solution of the one-dimensional Kramers problem [6] 

y ( y )  = 4 y )  exp[-AE(y)lTI. (2.8) 

The re!.!innship b.t\.leen the initia! poten!ia! V(X, y )  and !he y-dependence of ei!her 
the activation energy AE(y) or the pre-exponent u(y) is presented in section 4. It 
should be recalled that we consider only the decay of the metastable state and ignore 
backflows of particles which have escaped the well. 

Let us introduce the function hdy, y) which describes the distribution over y and 3 

, 
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According to equations (2.2)-(2.7) this function satisfies the equation 

A M Berezhkovskii and V Yu Zitserman 

The effective potential V.dy) is connected with the intitial potential V(x, y )  by the 
relationship 

(2.11) 

Equation (2.10) is the effective equation which describes the distribution over y 
and 9. In order to simplify further calculations we shall assume that the mass my is 
not too large. Then with relatively large values of qy-which are our interest-the 
distribution over the y-velocities instantly relaxes towards the Maxwell distribution. 

over the y-coordinate only we obtain [12] 
Mikino mnvpntinnil rnAi r r t inn  nf 17 10) tn ~ l n  nniiotinn whirh Apcrr ihne  th- A ~ e + A h ~ s * i n ~  
.I_* ..... --...-.... " ..I. ._-- ~ ..-.. -1 \-.-I, .v *.. -~**..-.. .,... -.. ..LI Y.I~II"*II".. 

(2.12) 

(2.13) 

where By = T/ qy is the diffusion coefficient. 
Equations (2.10) and (2.13) are the main results of this section. In [ll], with the 

aid of the projection operator technique, we reduced (2.1) to an effective evolution 
equation. This e9uation has the same form as (2.1), but the operator LFp is changed 
to the operator Le, (2.13) containing the sink term. In [ l l ]  we show that the reduction 
is valid if several conditions are fulfilled. Here we note the three conditions considered 
the most important: ( a )  potential profile V(x, y =constant) should be a double-well 
type; ( b )  qy >> q. (some estimations clarifying this point are presented in section 5 ;  
( c )  friction coefficient qy should be large enough that one could eliminate the velocity 
y from the initial FP equation. 

It should be emphasized that we assume that the motion is diffusive along the 
y-coordinate only. On the motion along the x-coordinate we do  not impose any 
restrictions. Variations in the friction coefficient qx lead to changes in the sink term 
value, but not the form of the equation (certainly, if the above-mentioned conditions 
are not disturbed). These circumstances allow us to start with the multidimensional 
FP equation comprising both velocities x, j and coordinates x, y. It is evident that such 
a reduction can be accomplished in the case of the multidimensional diffusion problem 
also. This problem is considered in recent papers [13,14] for the two-dimensional 
case. In these papers a similar reduction of the initial multidimensional problem to 
the effective one-dimensional problem is carried out. Similarities and distinctions 
between both approaches and results are dealt with in [15,16]. 

In the following sections we use equation (2.10) and (2.13) for calculation of the 
least eigenvalue r of the starting operator LFp under highly anisotropic friction. In a 
further section we show that in the case of potentials with a single-well profile 
V(x, y = constant) this eigenvalue coincides with asymptotes qy +CO of the conventional 
KLT formula. In contrast, in the case of potentials with a double-well profile V ( x  y = 
constant) we obtain a new solution of the problem which differs considerably from 
such asymptote. In section 5 we point out the range of friction coefficient l)y over 
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which significant departures of the escape rate I' from predictions of the conventional 
KLT formula take place. 

3. Escape rate calculation based ou the effective equation: no sink case 

In the case under study here the profile V ( x ,  y =constant) is a single-well curve and 
the Maxwell-Boltzmann distribution over x and x with each magnitude of the slow 
coordinate y sets in as a result of the rapid relaxation, i.e. 

The potential V ( x ,  y =constant) has a minimum, its position x , ( y )  being determined 
from the equation 

When calculating the effective potential V,&y) we assume that in the fairly wide 
vicinity of the point xo(y )  the potential V ( x ,  y )  is a quadratic function of x 

V(X, Y )  = V d Y )  +fx(y)[x-x0(y)l2 (3.3) 

where 

Equation (Z l l ) ,  (3.1) and (3.3) lead to an effective potential of the form 

(3.5) 

where G is an arbitrary constant which fixes the zero of energy. Let us discuss the 
potential V , A y )  in more detail. It is possible to show that it is a double-well curve, 
its minima being at the points y; and y,, and the maximum at the point y,, where yi, 
yr and y,, are the values of the y-coordinate at the initial and final wells and the saddle 
point in the potential V ( x ,  y), respectively. 

Thus, in the case under consideration, as a result of adiabatic elimination of the 
fast variable we come to the one-dimensional Kramers problem in the potential V,&). 
This problem is described by (2.10) with y ( y ) = O .  In this case the expression for the 
escape rate gives the Kramers formula [6] 

(3.6) 

Let us show that this expression coincides with the asymptote vS+m of the 
conventional KLT expression for the escape rate. The latter expression has the form 
[7,171 

det p'" 
27r ldet frpl re=-!-( ) Hexp(-AV/T) (3.7) 



2082 

where e'" and Psp are the matrices of the second derivatives of the potential at the 
well bottom and at the saddle point, H is the single positive root of the equation 

det(r+iH*+GH+ Psp)=O. (3.8) 

With vv+m the positive root of (3.8) is determined by different formulae depending 
on the sign of the matrix element V z  

A M Berezhkovskii and V Yu Zitserman 

(3.9) 

(3.10) 

In the case under study when sections V ( x ,  y =constant) are single-well curves and 
V: = x(y,,) > 0, it is easy to see that (3.6) coincides with (3.7) in which H is determined 
by (3.9). 

Let us point out the principle difference between equations (3.9) and (3.10) for the 
H-quantity and, hence, the difference between the conventional escape rate expressions 
for potential surfaces V ( x ,  y) with V z  > 0 and V g  < 0. If V Z  > 0 according to (3.7) 
and (3.9) the escape rate decreases with an increase in the friction coefficient 'ly and 
tends to zero with v y + m  as l/vy. In contrast, if V z C O  according to (3.7) and (3.10) 
escape rate does not depend on the friction coefficient qy along the slow coordinate. 
This fact contradicts general qualitative ideas. Indeed, with the presence of a slow 
coordinate particles escape the well in the following manner: the rapid coordinates 
adjust themselves to the slow one and the process is limited by the slow motion. 
Therefore, the Itrue' escape rate should decrease with increasing qV. In the following 
section we derive a new formula for the escape rate in the case of potentials with 
V:: < 0 which is free from this obvious defect. 

4. Escape rate calculation based on the effective equation: problem with a sink-term 

We begin our escape rate calculation in the case of potentials V ( x ,  y )  whose profile 
over x, V ( x ,  y = constant), with actual y-values is a double-well curve, by establishing 
the relationships between the potential V ( x ,  y)  with the sink term (2.8) and the effective 
potential V.,xy). It should be noted that for such potentials V z < O .  Let us designate 
the coordinates at the bottom of the left and right wells, and the top of the banier 
which separates them in the section V(x,y=constant), by x o ( y ) ,  x l ( y )  and x b ( y ) .  
respectively. They are the roots of the equation 

and x o ( y ) < x b ( y ) < x , ( y ) .  The activation energy A E ( y ) ,  which depends on the y- 
coordinate, is determined by the expression 

A E ( Y ) =  V b b -  VO(Y) (4.2) 

where 

V b b )  = V ( x b ( y ) ,  y )  Vdy) = V(XO(Y), y ) .  (4.3) 
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It is possible to show that the potentials Vo(y) and Vb(y) are single-well curves which 
have their minima at the points y = y, and y = y,,, respectively, where y, and y,, are 
the values of the y-coordinate at the bottom of the initial well and at the saddle point, 
respectively. The pre-exponent u(y) in equation (2.8) according to the Kramers formula, 
has the form [6] 

(4.4) 

where 

XdY) = VL(XO(Y ), Y 1 and xb(y)= vk(Xb(y), y) 
The basic contribution to the integrals in (2.11) for V.dy) is made in the vicinity 

of point xo(y) where the function qrcy,(x, x ly)  is close to the Boltzmann distribution. 
Utilizing the quadratic expansion over x of the potential V(x, y = constant) in this 
vicinity 

V(X, Y) = VdY) +t~o(Y)[~-xo(Y)l '  (4.5) 
we obtain the following expression for the effective potential 

(4.6) 

In equation (4.6) the zero of potential energy is fixed in such a way that in the vicinity 
of the point y, the potentials V.,,.(y) and Vo(y) coincide. 

Thus, we have established relations between all the parameters which enter into 
the effective equation (2.13) with friction coefficients and initial multidimensional 
potential V(x,y). Let us go to direct calculations of the escape rate based on this 
equation . 

A number of papers [18-211 are devoted to an analysis of the decay kinetics of a 
state whose evolution is described by the diffusion equation with a sink term of the form 

(4.7) 

where f(y, 1) is the distribution function over the y-coordinate at the time instant t. 
This equation takes account of the competition between the two processes: relaxation 
towards the Boltzmann distribution in the potential V.,(y) and decay due to the sink 
y(y) which destroys this distribution. Kinetics is easily calculated only in the two 
limiting cases when 9, = 0 and 9, + 00. 

In the first case (9, = 0, relaxation is frozen) the probability of the particle staying 
in the well during the time interval f (the so-called survival function) 

Q(t) =I J(Y,  1) dy (4.8) 

changes with time according to the law 

Q ( f )  = f (y ,  0) ~ X P [ - Y ( Y ) ~ ]  dy. (4.9) 

In this case the decay has a multiexponential nature and depends on the initial 
distribution f(y, 0). Equilibrium in the well is not reached and particles do not escape 
from the well through the saddle. 
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In the other limiting case, 9, -f CO, relaxation instantly restores the equilibrium 
distribution in the potential V.&) 

f (y)=exp[-Vdv) /  TI. (4.10) 

Here, the decay is a single-exponential Q ( t )  = Q(0)  exp(-rt), where the escape rate 
r has the form 

In the general case the decay is described by the multiexponential law 
m 

Q ( t )  = C c, exp(-A,t) 
" = I  

(4.11) 

(4.12) 

where An are the eigenvalues of the effective evolution operator Le, (2.13), numbered 
in the order of their increase, c. are the decomposition coefficients of the initial 
distribution f ( y ,  0 )  over eigenfunctions of the conjugated operator 

(4.13) 

Equation (4.12) shows that for the single-exponential decay it is necessary to satisfy 
two conditions, the first being the gap in the spectrum of eigenvalues of the operator 
fmN: A ,  << A,. This condition reflects the fact that quasistationary distribution-which 
decays according to the single-exponential law exp(-A,t)-sets in during the time 
interval of the order A;' which is small compared to the typical time interval of its 
subsequent decay A;'. The second condition is expressed by the inequality 

m 

c,  >> c.. 
n = 2  

Actually, it is the demand for the initial distribution which guarantees the single- 
exponential decay of the overwhelming majority of the assembly subsystems. Further, 
we assume that this condition is fuifilled. 

In our method for the solution of equation (2.13), which is put forward below, 
specific features of the sink term are used. The main peculiarity of the sink term is its 
fast growth with ,y. Near the well bottom of the effective potential the sink force is 
negligibly small and the distribution fr(y) in this region is close to the equilibrium 
distribution. With an increase in y the sink force grows exponentially which leads to 
an appreciable depletion of the distribution f i . (y )  (compared with the Boltzmann 
distribution) due to particle escape. As long as the depleted region is far enough from 
the well bottom, the decay kinetics is of single-exponential nature since particle escape 
from the well occurs much more slowly than relaxation in the well. 

In order to calculate the least eigenvalue r let us present equation (2.13) in the form 

(4.14) 

Let us integrate this equation from -cc up to the point j. Choice of the point j we 
specify below. Here, we indicate that the pointy is chosen far enough to the right of 
the weii boiiom, y ,  i y (we iake ihri y y  < y,,), so iiiai ihe noriiiaiizatioii coii:i;iiiii 
can be written in the form 

(4.15) 
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As a result, we obtain the following expression for the escape rate 

(4.16) 

To obtain the escape rate r from formula (4.16) it is necessary to know the function 
fr(y) with y S j ,  and its first derivative at the point j , f f ( j ) .  For calculation of this 
eigenfunction we use a method initiated by Kramers 161 and which was discussed in 

is very close to zero, and consists in constructing the eigenfunction fr(y) from the 
solutions of the stationary equation with r=O. We shall see that our choice of 
the point j is made in such a way that in calculating fr(y) for y < j we can neglect 
the sink term y(y) in the operator Lem (2.13). As a result, the equation determining 
fr(y) for y < j  takes the form 

d&! in I recent revie.. artic!e [22$ !!r main idea taker intn eccn??nt the fzc! thz! r 

(4.17) 

This equation has two linearly independent solutions: equilibrium distribution in the 
potential V&), ~ X Y ) ,  and 

UY) [’ exp[ V.dy’)/ 77 dy‘. 

The eigenfunction f,(y) is presented in the form of a linear combination of these two 
solutions 

Here, A is a constant which will be determined from the requirement of matching of 
(4.18) at the point j with the expression for fr(y) which is true for y a y .  The point 
yo is taken in such a way that it is between the well bottom and the point j ,  far away 
from each of them, i.e. yw<yo<j .  It should be noted that the point yo does not enter 
into the final expression for the escape rate. 

Now, let us calculate the function fr(y) for y a y .  Here, we present the function 
fr(y) in the form 

(4.19) 

and, as a result, pass to the Schrodinger-type equation for the function xr(y) 
fr(y) = X r b )  expt- V.AY)I~TI 

&r = rxr (4.20) 

(4.21) 

The term W(y) in the ‘potential energy’ in Hamiltonian %’ is linked to the potential 
V&y) by the relationship 

d2 
$?= -%3+ t W(Y) + Y(Y)l .  

(4.22) 

Lei us define our choice of ihe poiat j ,  The geiieiii! vim of :he j30ziitki: eiieigy 
function in the Hamiltonian (4.21) prompts us to choose as y’ the value of the 
y-coordinate where both terms in the potential energy are equal: 

W(j) = Y(F). (4.23) 
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With y < y  the distributionfdy) is close to equilibriumf.(y) since here W(y) >> y(y). 
This fact justifies disregarding the sink term in (4.17). In the appendix we show that 
for a wide range of j-values the growth rate of the sink term y(y) greatly exceeds the 
growth rate of the competing contribution to the potential energy, W(y) for y ay, For 
this reason with y > j ,  y(y)>> W(y), the distribution &(y) is appreciably depleted 
compared with the equilibrium distribution, due to particle escape. 

In our solution of equation (4.20) with y 27 we use the exponential growth of the 
sink term and introduce two simplifying assumptions. We suggest that with y 

W(y) = W ( 7 )  = constant y b ) =  Y exp[s(y-7)1 (4.24) 

where y = y ( j )  and s = s ( j )  = y’( j ) /y( j ) ,  since the function ,yr(y) rapidly tends to 
zero with y > j ?  As a result, (4.20) takes the form 

A M Bererhkovskii and V Yu Zitserman 

y 

(4.25) 

Here we take into account that, according to the definition of the point (4.23), 
W(y) = y ( j )  = y. The solution of this equation, tending to zero with y + m, has the 
form [23] 

X ~ Y )  = B-‘L(z) 2 = P exp[s(y -y)/21 (4.26) 

where B is an arbitrary constant and K,(r )  is the modified Bessel function [23] 

(4.27) 

Here we take into account the fact that the ratio r / y  is much smaller than unity. 
The constants A and B entering into equation (4.18) and (4.26) can be determined 

from the requirements of continuity of the function fr(y) and its first derivative at the 
pointy. As a result, we obtain 

A = A ( j ) =  -Mexp[-Vc&)/T]h(p) T (4.28) 

where the function h ( p )  has the form 

(4.29) 

With ,L> 0 h(p)  is the positive monotonically decreasing function satisfying the 
inequality h ( p ) S  1, equality being reached at ,L =O. 

Now, having the explicit expression for the function fr(y) with y =z 7, we can find 
the desired eigenvalue from equation (4.16). As a result, we obtain 

r = r,+r,+r, (4.30) 

V&y) by the relationship 

(4.22) 

Lei us define our choice of ihe poiat p The geiieiii! vim of :he j30ZiitiA eiieigy 
function in the Hamiltonian (4.21) prompts us to choose as y’ the value of the 
y-coordinate where both terms in the potential energy are equal: 

W(P) = Y@). (4.23) 
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Assuming that in the vicinity of the well bottom the potential V.&) is quadratic 
and calculating the integral in (4.33) we obtain 

r, = h(P)rFpT(j) (4.34) 

where rppT(9) is the inverse first passage time from the point y < j to the point j ,  
averaged over the positions of the starting point y with the Boltzmann weight [241 

(4.35) 

Here we also take account of (4.28) for A. One can show that I'z and I', have the 
relationship. 

r2= --r,. P (4.36) 
4 

As a result, we can present equation (4.32) for the escape rate in the form 

(4.37) 

This expression for the process rate is one of the main results of the present paper. 
Its detailed analysis is presented in the following section. The simplified version of 
(4.37) was first obtained in our paper [IO]. In [IO], in the second term, the factor 
(1  - p/4)h(p)  is equal to unity, i.e. it is suggested that p = 0. 

5. Discussion 

Analysis of equation (4.37) begins by noting that according to this expression the 
escape rate is determined by the position of the point j in a single-valued manner. In 
turn the 9-position is a function of the friction coefficient l)y in accordance with (4.23). 
With j + m ,  rFpT(j)+O and (4.37) takes the form (see (4.11)) 

m 

r= r  e = Y ( Y ) f , ( Y )  dY. (5.1) 

Substituting in (5.1) the explicit expressions for the functions y ( y )  and f . ( y )  we make 
sure that the escape rate re coincides with asymptote 9,+m of the conventional KLT 
formula, i.e. with equation (3.7) in which the factor H is determined by equation 
(3.10). The main contribution to the integral (5.1) is made in the vicinity of the y, ,  
point. This means that particles escape the well passing via the saddle, i.e. the qualitative 

Up to now there are two characteristic values of the y-coordinate: y, and ys,. The 
condition j - t m  means that j > y , , .  However, if y'<ysp but 9 > y w ,  the second term 
in (4.37) is dominant and the escape rate takes the form 

i-= (1  - F / ~ ) ~ ( P L ) ~ F P T ( ~ ) .  (5.2) 

r=rFPTm. (5.3) 

-:-+..-a ..,Lirl. -.- iC L n c n A  tnLnc nlQ,-P p,"c'J" p1CLU.b "1. W l l . 1 . 1  ,.L. 10 "U l lV  L'.&.,., Y.Y"U. 

If, additionally, P is close to zero, then 

In  accordance with these formulae we note the following: first, in those situations 
when (5.3) is applicable, the particles escape the well before they reach the saddle 
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since j < y , , .  Second, in this case the process is determined by the well dynamics, not 
passage through the barrier region as is assumed in the conventional process picture. 
Equation (4.35) for rF&) suggests this unambiguously since all the quantities entering 
into it are characterized by the dynamics in the well. It should be noted that equation 
(5.3) for the escape rate as an alternative to the conventional KLT formula was first 
obtained in our paper [9]. 

Thus, (4.37) for the escape rate comprises both the conventional regime-when 
particles escape from the well via the saddle on the potential surface-and the new 
decay regime when rocr,,(j) and particles escape the well before they reach the 
saddle. 

Analysis of the equations obtained is considerably simplified if we specify the forms 
of potentials. In typical situations when in the region of both the well bottom and the 
saddle point, quadratic expansions are true and the potentials V&), V o ( y )  and Vb(y)  
have the form 

A M Berezhkovskii and V Yu Zitsennun 

(5.4) 2 V A Y )  = Vn(Y) = %oy2 Vbb') = A V + f k b ( y - y s p )  . 
Here and below we employ the system of coordinates whose origin is at  the bottom 
of the initial well, i.e. yw = O .  The parameters kn and kb in (5.4) are expressed through 
the parameters of the initial potential V(x,  y )  by the relationships 

det 
kb =-. det 8'" 

kn=- 
V,", V Z  

The values k,, and kb are positive since det 8'" and V,", are both positive and det 8%. 
and V z  are both negative. Substituting V.,dy) (5.4) in (4.22) we obtain 

l k , ,  W ( y ) = -  --+-y'  
~5 ' (  2 4 T  ) (5.6) 

where ra = T / 9 , k 0 =  V J k , ,  is the characteristic time of diffusion relaxation in the 
potential V.&y). We shall also assume that in the sink term (2.8) the pre-exponent 
does not depend on y, and the activation energy (4.2) has the form 

and with the actual y-values is positive and decreases with increasing y.  In this case 
the sink force ~ ( y )  grows with y .  

In the framework of these assumptions equation (4.37) for the escape rate takes 
the form 

A E ( y ) = A V + $ k b ( y - y , p ) 2 - f k , , y 2  (5.7) 

Here 

where erf(r) = (2/&) 
ing to (4.27) is determined by the relationship 

exp(-g2) dg  is the integral of errors [23]. The p-value accord- 

(5.11) 
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Finally, (4.23)-from which the position of the point 9 is determined-can be 
presented in the form 

(5.12) 

Here we take into account the fact that the ratio V&)/ T is much greater than unity 
with the ?-values under consideration. Generally speaking (5.12) has three roots, 
however, two of them-which are near the well bottom-have nothing to do with the 
subject. Using (5.12) we can write the important relationship 

(5.13) 

which shows that T,,(g) is always smaller than the asymptote q,+m of the conven- 
tional expression r, if the point 1 is not too close to the well bottom. 

The expressions obtained allow us to specify the conditions under which the new 
decay regime takes place. The conventional KLT formula (3.7) is correct if 

j -ysp >> JT/k,. (5.14) 

The region where the escape rate is considerably smaller than that predicted by the 
conventional formulae is determined by the requirement 

i =z Y*, (5.15) 

but J > y , .  At the boundary of the region-where j=y.,-the escape rate (5.8) is 
approximately two times lower than re. 

Equation (5.12) determines how the position of the point j changes with change 
in the friction coefficient T ~ .  Analysis of this equation shows that the j-point shifts 
deeper into the well with increasing vy (more precisely, with an increase in the product 
w, in the left-hand side of (5.12)). The product r.Ta is a more convenient control 
parameter for the problem than Y T ~ .  With the help of this parameter the inequality 
(5.15) determining the region where escape rate deviations from the conventional 
formulae are considerable can be presented in the form 

rerB 3 & exp(-s,) Ea = V O ( J J S J /  T. (5.16) 

There is another limiation on the application of equations (4.37) and (5.8) for the 
escape rate, namely that the j-point must not be too close to the well bottomt. More 
precisely, this condition requires satisfaction of the inequalities 

(5.17) 

These inequalities are equivalent to a restriction on the dimensionless control parameter 
rela of the form 

(5.18) 

t If this condition is not fulfilled the decay kinetics has a multiexponential nature (see section 4). 
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Thus, the region of the r.r,-parameter where our new solution leads to considerable 
escape rate deviations from the conventional predictions is given by the inequalities 

A M Berezhkovskii and V Yu Zitserman 

(5.19) 

It should he noted that the parameter rer, is a complex construction. It depends 
on the friction anisotropy and also on other problem parameters such as temperature, 
potential, etc. To study the dependences in detail it is necessary to concretize the 
model. This will be done in a further paper. 

In concluding this section let us point out the most important feature of the revised 
escape rate (4.37), (5.8): the rate tends to zero with an increase in T~ (at fixed T ~ )  in 
contrast with the conventional expression which tends to a finite value with q,+m 
(see (3.7), (3.10)). To verify the presence of such a feature it is necessary to take into 
account the relationship between the friction coefficient and the j-point position which 
is set up by equation (5.12). 

6. Concluding remarks 

In the paper a new solution of the noise-induced escape problem is obtained. This 
solution shows that if friction anisotropy is strong enough particles escape the well 
before reaching the saddle on the potential surface. In this case the process is limited 
not by passage across the barrier top but by reaching the transition region, i.e. by the 
well dynamics. When the friction anisotropy is not too large the conventional solution 
of the problem, i.e. the Kramers-Langer theory is correct. 

The new solution predicts considerably smaller escape rate values than the conven- 
tional one if friction anisotropy is strong enough. Additionally, our theory shows that 
with very strong friction anisotropy when condition (5.18) is disturbed, the decay 
kinetics has a multiexponential character and depends on the initial state of the system 
(see section 4). 

Such a state of affairs seems to us particularly interesting in two respects. The first 
aspect is connected with the opinion repeatedly quoted in the literature that the only 
condition which guarantees the single-exponential character of decay kinetics is the 
barrier height requirement, i.e. AV/T>> 1 [ 5 ] .  Our theory shows that this opinion is 
wrong: the transition from a single exponent decay to a multiexponent decay occurs 
as a result of a change in friction anisotropy, although the requirement AV/T>> 1 in 
this case is fulfilled. 

Secondly, our analysis shows limitations of the viewpoint that noise-induced escape 
from attractors always occurs via the saddle on the potential surfaces. We show that 
there are situations in which particles escape from the well before they reach the saddle, 
in spite of the fact that the condition AV/ T >> 1 is met. 

In conclusion, we reiterate the conditions under which our new solution is true. 
These conditions represent the requirements which are placed upon both the friction 
coefficients and the potential surface. The friction must be sufficiently anisotropic to 
ensure the existence of the slow mode. However, this anisotropy must not be too 
strong, otherwise, the decay has a multiexponential character. As regards the potential 
surface, it should be noted that it must have double-well sections with fixed values of 
slow coordinate over a wide range of these values. Also, the second well must be 
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deeper than the first so that neglecting the retum of particles which escape the first 
well is valid. 

Appendix 

Let us compare the growth rates of the competing contributions to the 'potential energy' 
in  the Hamiltonian (4.21), W(y) and y(y), at the point 7 determined from (4.23). For 
this purpose we use the potential V(x ,  y) studied in section 5.  Let us consider logarithmic 
derivatives 

and 

Comparison of these equations shows that over a wide range of ji-positions the growth 
rate of the sink term y(y) significantly exceeds the growth rate of the competing term 
W(y) at this point. This relation between the growth rates breaks down in two cases: 
(1) the approach of the 7-position close to the well bottom, 7 - m ;  and (2) with 

In the first case the decay has a multiexponential character and our new expression 
for the escape rate does not 'work'. In the second case our method of problem treatment 
does not 'work'. These 7-positions correspond to friction coefficients qy for which it 
is not reasonable to assume that the y-coordinate is a slow one. In such situations the 
procedure of adiabatic elimination of fast variables leading to our basic equations 
(2.10) and (2.13) is not applicable. In this case the escape rate r is determined by the 
conventional KLT formula. 

7 >> Ysp . 
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